
Larger Internal Ptrs
Suggested ideas
Tue, Oct 8, 2002

Suppose it were important to support internal ptrs that require more than 32 bits to express. 
One could imagine allocating a block of memory that could contain whatever is needed. The 
internal ptr would be the address of the allocated block. To make this work, though, we need 
to find a way to make sure that the allocated blocks are freed when the request is canceled. 
There may have to be some clean up code that is executed when a request is freed, according 
to the particular read-type routine used in the request. ??

A particular listype could have another attribute, one that specifies whether such block 
releasing is needed. Its job would be simple; merely traverse through the internal ptr array, 
and free each block referenced. Or, maybe we can add another field to a request block which 
can be a header for a linked list of block pointers. While initializing the request, if a block 
must be allocated, add its address to the linked list. When freeing this kind of block, the 
cancel code would check this header, and if it is non-NULL, free all the blocks in the linked 
list.

A less elaborate approach might be to merely double the size of the internal ptr. This would 
affect a lot of code if it were done in general. Can it be done by the listype? Right now, the 
determination of the space required for an array of internal ptrs is fixed and done before 
actually generating the internal ptrs. We would need a way for that code, which may be 
preparing to allocate the request support block, to know how much space to set aside for 
each internal ptr for each ident. Then the ptr-type routine and the read-type routine would be 
the only ones to know how much space is needed for each.

Suppose the upper two bits in the byte that contains the ptr-type code were used to specify 
any additional longwords needed for internal ptrs. These bits would normally be zero, but 
they could be used to add 4, 8, or 12 extra bytes to the internal ptr field. We need to examine 
what code cares about the ptr-type field. The LTTPTT routine could function as now, but 
return only the low 6 bits of the ptr-type byte. Another routine, LTTPSZ, could be defined to 
return the new 2-bit field. An alternate way to do this via a new LTTPSZ is to use another 
array that is indexed by ptr-type value. Or even simpler, one can add code whenever a new 
ptr-type routine needs more room for its internal ptr structure. 

Only LTTPSZ should be the source of information about the size of an internal ptr, and it 
could always depend upon the ptr type. What’s more, the ptr-types need only be those that 
are 32 and above. Right now, the maximum ptr-type number is 46, so we are only talking 
about 15 different values. This scheme would assume that ptr-types that correspond to 
system tables do not have a need for an internal ptr format longer than 4 bytes. Armed with 
LTTPSZ, whose argument should be the listype id, any code would need to scan through all 
listypes to build a count of longwords, say, needed for the complete internal ptr array needed 
by the request. Code that does this is both ReqDat and PReqDat, and ACReq and FTPMAN. The 
ACReq code already uses 8-byte internal ptrs in some cases, so this new scheme should not 
mess with that logic, such as for building an average of data when requested at reply rates of 
less than 7.5 Hz.

At the time the size of the internal ptr structure is required, only the listype number is 
available. It has not been broken down into a listype-id, ident-type, or ptr-type yet. So, even 
though the logical argument to LTTPSZ is the ptr-type number, it could be the listype number 



instead. It could return –1, say, for an error; otherwise, it can return the number of longwords 
needed for the internal ptr structure for the given listype. This result would nearly always be 
1, but it could be more than 1 for some listypes.

Example of larger internal ptr
The motivation for this suggested support for larger internal ptrs is the support 

required for fast digitizers. The internal ptr structure needs to retain the location where in a 
circular buffer the sampling of data last left off. For the 1 KHz digitizer, this offset is a 16-bit 
byte offset in a 64K byte circular buffer. For the 10 KHz digitizer, we need to retain at least 20 
bits as a word offset within a 2 MB, or 1 MW, circular buffer. Because we need to also retain 
an 8-bit clock event number, we feel the squeeze. There also needs to be an id to indicate 
which block of consecutive channels is referenced, since it is necessary to know where the 
circular buffer is located and also where the registers are located and where the list of time-
stamps for each slot. One also needs to know the number of sets of data within the circular 
buffer. The code that supplies the return data needs access to all of these parameters, which 
may vary depending on the ident. So, what format might a larger internal ptr structure take?

Larger Internal Ptrs p. 2


